MITIGAÇÃO AMBIENTAL ATRAVÉS DA INOCULAÇÃO DE MICRORGANISMOS EFICIENTES EM DEJETOS PROVENIENTES DE CUNICULTURA

Ana Catarina Pereira Bandeira Leal¹; Vinícius de Souza Teixeira².

¹Universidade Federal da Paraíba (UFPB), Bananeiras, Paraíba. https://lattes.cnpq.br/7425818155881535
²Universidade Estadual da Paraíba (UEPB), Campina Grande, Paraíba. https://lattes.cnpq.br/1152550031869385

PALAVRAS-CHAVE: Serviço ecossistêmico. Manejo sanitário. Biorremediação.

ÁREA TEMÁTICA: Agroecologia.

DOI: 10.47094/978-65-6036-586-5/1

INTRODUÇÃO

Os estudos em Microrganismos Eficientes, ou *Effective Microorganisms* (EM), surgiram no intuito de permitir a reciclagem da matéria orgânica na agricultura, tornando-a mais sustentável (Casali, 2020).

Biorremediadores são produtos ou agentes de processos físicos, químicos ou biológicos que se destinam à recuperação de ambientes e ecossistemas contaminados, bem como o tratamento de efluentes e resíduos, onde estes agentes possuem, como ingredientes, microrganismos capazes de reproduzirem-se e degradarem bioquimicamente compostos e substâncias contaminantes (Conselho Nacional do Meio Ambiente (CONAMA, 2014).

Há a necessidade de mitigação na cadeia produtiva da criação de animais em confinamento, visto que a gestão adequada dos resíduos gerados é um dos principais obstáculos. O descarte indiscriminado desse material no meio ambiente representa um risco significativo de contaminação do solo, dos lagos, rios e lençois freáticos, devido à infiltração de águas residuárias. Além disso, a má gestão desses efluentes pode levar à proliferação de insetos e à emissão de gases malcheirosos, conforme Campos (1997).

Ainda em relação aos resíduos, conforme Mucciacito e Cordeiro (2014), os maus odores oriundos de efluentes sanitários podem causar problemas à saúde, inclusive atrapalhar a concentração e o rendimento escolar, quando próximos a ambientes acadêmicos. A utilização de EM como alternativa para o tratamento sanitário vem demonstrando eficácia (Correa *et al.*, 2015). Sobretudo na remediação de efluentes, os EM têm efeito positivo, degradando compostos e nutrientes (Trentin, 2021), onde pode ser caracterizado, segundo Sánchez (2013), como uma medida mitigadora, contando que a aplicação de EM se caracteriza, nesta experiência, como uma ação de finalidade redutora do impacto ambiental percebido, humanamente, pelo odor presente no local.

OBJETIVO

Este trabalho teve como principal objetivo avaliar a eficácia da utilização de EM no tratamento de dejetos de coelhos domésticos (*Oryctolagus cuniculus*) no Laboratório de Cunicultura (LC) do Centro de Ciências Humanas, Sociais e Agrárias (CCHSA) da Universidade Federal da Paraíba (UFPB), *Campus* III, visando a mitigação de odor e impactos ambientais causados pelos excrementos desses animais.

METODOLOGIA

O método de coleta e aplicação de EM foi fundamentado a partir de Casali (2020), com adaptações não significativas com o resultado final, mas para aspectos logísticos (preparação das iscas, transporte e disponibilidade de materiais). Para este trabalho, os microrganismos foram capturados em ambiente de mata nativa caracterizada como zona de transição entre os biomas Mata Atlântica e Caatinga, localizada no município de Bananeiras, estado da Paraíba, coordenadas 6° 45' 24.38"S e 35° 38' 54.45"O.

À época do experimento (de agosto a outubro de 2023, com duração de oito semanas), o LC do CCHSA da UFPB, contava com uma população de 65 animais criados em sistema de confinamento, distribuídos em gaiolas galvanizadas alocadas acima de duas valas destinadas a captar os dejetos.

A isca foi composta por arroz branco (*Oryza sativa*) cozido (sem sal) envolto por tecido *voil*, para proteção contra animais (principalmente insetos) e reforçado com telhas de cerâmica como proteção ambiental. Utilizou-se aproximadamente 150 g de arroz cozido por isca, sendo depositada na mata e coberta por serapilheira, ficando no local por 15 dias.

Após os 15 dias, a isca com o arroz colonizado pela comunidade microbiológica residente na mata foi coletada, onde foi realizada, posteriormente, a separação dos organismos de interesse dos não interessantes, conforme Casali (2020). Os organismos de interesse foram depositados em um recipiente de garrafa PET contendo uma solução de água e melaço de cana-de-açúcar (*Saccharum* sp.), na proporção de 10% de melaço de cana, para 90% de água, totalizando a solução, aqui chamada de *coquetel biológico*. Após a homogeneização dos materiais, o coquetel foi deixado em repouso por 20 dias, quando a ação fermentativa dos microrganismos cessou. Houve a necessidade de abertura do recipiente a cada dois dias, para o escape dos gases oriundos da fermentação biológica.

Em seguida, o coquetel biológico foi diluído em água potável na proporção de uma parte do coquetel para cem partes de água (1:100), criando a *solução de EM*, que foi aplicada no material orgânico.

Este material orgânico estava separado espacialmente em duas valas utilizadas para captar os dejetos líquidos e sólidos dos coelhos, onde a Vala 1 conteve apenas material excretado pelos coelhos, enquanto a Vala 2 conteve um volume de capim braquiária (*Brachiaria*) depositado junto aos dejetos excretados pelos animais. O capim foi proveniente

de roçagem de áreas da UFPB sem utilização de produtos agrícolas de qualquer natureza.

Houve a aplicação de 1,2 L de solução de EM três vezes por semana em cada vala, às 8 horas da manhã, e, a cada 15 (quinze) dias, a aplicação de 500 ml de caldo de canade-açúcar apenas na Vala 2 (com material fibroso) como estimulante ao crescimento da comunidade microbiológica. A aplicação do caldo de cana ocorreu em dias de não aplicação de solução de EM.

O ciclo de aplicação de solução de EM no LC findou-se com a retirada do material fibroso da Vala 2, sendo este utilizado para a preparação de natureza pedagógica de compostagem para o curso de Licenciatura em Ciências Agrárias do mesmo *Campus*.

RESULTADOS E DISCUSSÃO

Esta ação trouxe mitigação significativa do mau odor no ambiente, percebido por funcionários e visitantes do LC, corroborando com Sánchez (2013) que explica que um impacto ambiental pode ser percebido humanamente.

Outro impacto positivo foi a redução da mão de obra empregada na manutenção das valas, devido à redução das lavagens, antes higienizada duas vezes ao dia, devido ao odor dos dejetos. A Vala 2 pôde manter-se sem lavagem por aproximadamente 60 dias, sem causar mau odor. A Vala 1, que não continha material fibroso, reduziu a frequência de 14 lavagens por semana para uma única lavagem semanal, economizando recursos hídricos e produtos de limpeza.

Segundo Ncube (2024), a aplicação de EM permite a mineralização eficaz da matéria orgânica, aumentando a disponibilidade de nutrientes para as plantas, sendo este fator fortalecido com o estudo de Brito (2018), que afirma que compostos adicionados de EM se tornam nutricionalmente mais ricos. Assim, o produto desta ação mitigadora gera um excelente composto agrícola.

CONSIDERAÇÕES FINAIS

A utilização de EM somados à adição de material vegetal nos ambientes de captação de dejetos da cunicultura permite a redução de odor, contribuindo para um ambiente salubre para profissionais e estudantes.

Além disso, houve uma significativa redução na mão de obra para a manutenção, além da utilização de recursos hídricos e de produtos de limpeza, tornando a produção cunícola mais sustentável.

Estudos mais aprofundados são necessários para que se estabeleça uma caracterização físico-química exata do produto gerado desta experiência, bem como a realização de um estudo de impacto ambiental para se valorar o serviço ecossistêmico advindo deste método.

PRINCIPAIS REFERÊNCIAS

BRITO, A. P. S. Qualidade e eficiência de compostagem com utilização de microrganismos eficientes. Orientador: Janaína de Moura Oliveira. 2018. Trabalho de Conclusão de Curso (Bacharelado em Agronomia) - Faculdade Metropolitana de Anápolis, Anápolis, 2018.

CAMPOS, Aloísio Torres de. **Análise da viabilidade da reciclagem de dejetos de bovinos com tratamento biológico, em sistema intensivo de produção de leite.** 1997. xv, 141 f. Tese (doutorado) - Universidade Estadual Paulista, Faculdade de Ciências Agronômicas, 1997.

CASALI, V. W.D. **Caderno dos Microrganismos Eficientes (EM)**: Instruções práticas sobre uso ecológico e social do EM. 3. ed. rev. Viçosa: Departamento de Fitotecnia/Universidade Federal de Viçosa, 2020.

CONSELHO NACIONAL DO MEIO AMBIENTE (CONAMA). Resolução nº 463, de 29 de julho de 2014. Dispõe sobre o controle ambiental de produtos destinados à remediação. [S. I.], 30 jul. 2014.

CORREA, C. Z.; NAKAGAWA, D. H.; DEMETRIO, L. F. F.; FREITAS, B. O.; PRATES, K. V. M. C. Coleta, ativação e aplicação de Microrganismos Eficientes (EM's) no tratamento de esgoto sanitário. **Anais do XX Congresso Brasileiro de Engenharia Química**, São Paulo, v. 1, n. 2, ed. 20, p. 7466-7473, 2015. DOI 10.5151/chemeng-cobeq2014-0645-24608-152204. Disponível em: https://www.proceedings.blucher.com.br/article-details/coleta-ativao-e-aplicao-de-microrganismos-eficientes-ems-no-tratamento-de-esgoto-sanitrio-17568. Acesso em: 26 ago. 2024.

MUCCIACITO, J. C.; CORDEIRO, S. A. A saúde afetada pelos odores provenientes do efluente doméstico e o problema dos esgotos a céu aberto. **Revista TAE:** Especializada em tratamento de água & efluentes., [s. l.], ed. 21, outubro/dezembro 2014.

NCUBE, L. Effective Microorganisms (EM): A potential pathway for enhancing soil quality and agricultural sustainability in Africa. **Strategic Tillage and Soil Management:** New Perspectives, [s. I.], 19 jun. 2024. DOI 10.5772/intechopen.114089. Disponível em: https://www.intechopen.com/chapters/88925. Acesso em: 28 ago. 2024.

SÁNCHEZ, L. E. **Avaliação de impacto ambiental: conceitos e métodos.** 2ª ed. São Paulo: Oficina de Textos, 2013. 583 p.

TRENTIN, A. B. Ação de Microrganismos Eficientes (EM) no tratamento de água e efluentes: uma abordagem cienciométrica e meta isticaanalítica. Orientadora: Deborah Catharine de Assis Leite. Trabalho de Conclusão de Curso (Licenciatura em Ciências Biológicas) - Universidade Tecnológica Federal do Paraná, Dois Vizinhos, 2021.