ÁREA TEMÁTICA: AGROECOLOGIA

UTILIZAÇÃO DE ÓLEOS ESSENCIAIS DE CAPIM-LIMÃO, CITRONELA E ÓLEO DE NIM NO CONTROLE DE INSETOS E MICROORGANISMOS

Renata Brito¹; Higino Marcos Lopes²; Maria do Carmo de Araújo Fernandes³ Renata Brito¹; Higino Marcos Lopes²; Maria do Carmo de Araújo Fernandes³

¹Universidade do Estado de Minas Gerais (UEMG), Passos, MG. http://lattes.cnpq.br/3664546487771369
²UniversidadeFederalRuraldoRiodeJaneiro(UFRRJ), Seropédica, RJ. http://lattes.cnpq.br/8357172030061038
³Empresa de Pesquisa Agropecuária do Estado do Rio de Janeiro (PESAGRO-RIO), Seropédica, RJ. http://lattes.cnpq.br/8084053063267581

PALAVRAS-CHAVE: Fungos de armazenamento. Caruncho do feijão. Agricultura orgânica. **ÁREA TEMÁTICA:** Agroecologia.

DOI: 10.47094/978-65-6036-586-5/4

INTRODUÇÃO

O modelo de agricultura fundamentado nos preceitos da "Revolução Verde" utilizava técnicas como a mecanização exaustiva do solo, implantação de monoculturas e o emprego abusivo de agroquímicos para a eliminação de pragas e doenças de plantas. Os resultados desastrosos foram inevitáveis e atualmente, a preocupação é com a busca de metodologias alternativas em todo o sistema de produção agrícola. As plantas podem ser consideradas organismos que coevoluem com os insetos e outros microrganismos e são fontes naturais de substâncias inseticidas e antimicrobianas (Castro e Ramos, 2013). Entre as metodologias de controle fitossanitário promissoras, estão o uso de extratos e óleos essenciais. Os óleos essenciais têm sido empregados como inseticidas naturais, e podem representar uma nova classe de defensivos (Siddiqui et al., 2017), usados no manejo integrado de pragas e na agricultura orgânica (Giulietti et al., 2015). Diante deste contexto, surge a necessidade de pesquisas visando o desenvolvimento de métodos alternativos aos convencionais de controle fitossanitário, adotando uma nova visão de agricultura que trata a natureza como um sistema vivo.

OBJETIVO

Objetivou-se avaliar o efeito de óleos essenciais e óleo de nim sobre isolados de *Penicillium* sp., bem como o efeito inseticida sobre a sobrevivência e oviposição do caruncho do feijão (*Acanthoscelides obtectus* Say).

METODOLOGIA

Para o ensaio com os fungos de armazenamento, foi ativado o crescimento, em placas de Petri contendo o meio de cultura BDA de fungos contaminantes de sementes (isolados de Penicillium sp.). Os microrganismos utilizados pertencem à micoteca da PESAGRO-RIO e se encontravam preservados em tubos de ensaio contendo BDA e óleo mineral. As placas foram mantidas em câmara de crescimento BOD por sete dias na temperatura de 25°C, e 12 horas de fotoperíodo. Para o óleo de citronela e capim-limão, foram testadas as concentrações de 0; 0,25; 0,50 e 1%. Enquanto que o óleo vegetal de Nim foi testado nas concentrações de 0,0; 0,5; 1,0; 2,0; 3,0; 4,0; 5,0 e 6,0%. Cada concentração foi misturada com detergente Tween 80% na proporção de 1:1 e adicionado ao meio de cultura BDA, após autoclavagem e antes de vertê-lo em placas de 9 cm de diâmetro. A repicagem dos fungos para o meio BDA, contendo os tratamentos, foi feita pela retirada de discos de 0,5 cm de diâmetro dos bordos das colônias e transferidos para o centro das placas de Petri. Após as repicagens, as placas foram mantidas em câmara tipo BOD, com fotoperíodo de 12 horas e temperatura de 20± 2°C, por 7 dias. Três dias após a repicagem, iniciaram-se as avaliações (aos 3, 4, 5, 6 e 7) em que foi considerado o crescimento micelial linear dos fungos. Na ocasião, foram aferidos os diâmetros (cm) de suas colônias em dois sentidos perpendiculares entre si, tomando-se como valor de crescimento a média das duas medidas. O delineamento experimental utilizado foi inteiramente casualizado, com concentrações variáveis dos preparados em três repetições, sendo cada repetição representada por uma placa. A comparação entre as médias foi efetuada pelo teste de Tukey a 5%, os dados foram transformados para √x+1 e as análises foram realizadas separadamente em relação aos óleos testados. Para o experimento com Acanthoscelides obtectus (Say.), foram colocados em potes plásticos de 250 ml, 10g de sementes de feijão e 10 insetos adultos. Estes insetos foram obtidos da criação do laboratório de controle biológico da Pesagro. O óleo essencial foi distribuído com pipeta graduada sobre papel de filtro. Para melhor solubilização, os óleos foram misturados ao detergente Tween 80%. O papel filtro foi encaixado na tampa de cada recipiente, aplicado um volume de 1 ml de solução de cada tratamento (0.5% citronela, 0.5% capim limão e 4% de óleo de nim) mais o controle água destilada +Tween 80. Os potes foram mantidos fechados para avaliação da mortalidade dos insetos adultos, realizada 24, 48 e 72 horas após a montagem dos testes. Na avaliação da mortalidade dos insetos, considerou-se vivos todos os insetos que movimentavam qualquer parte do corpo, mesmo que devagar quando estimulados. A avaliação da oviposição foi realizada sete e dez dias após o confinamento dos insetos. O delineamento experimental foi inteiramente casualizado com quatro tratamentos e cinco repetições. Os dados foram submetidos à análise de variância e as médias comparadas pelo teste de Tukey a 5%.

RESULTADOS E DISCUSSÃO

De acordo com os Resultados obtidos (Tabelas 1, 2 e 3), é possível observar a ação antimicrobiana de todos os óleos testados, variando em função da concentração utilizada. Observou-se o decréscimo no crescimento micelial, à medida que aumentaram as concentrações dos óleos testados. Diversas pesquisas têm demonstrado o potencial desses óleos como inibidor do crescimento micelial de fitopatógenos e também de fungos de armazenamento, conforme a espécie utilizada neste estudo (*Penicillium* sp.). Observou-se que a partir da concentração de 0,25% do óleo essencial de capim limão e citronela, é possível a diminuição significativa do crescimento micelial dos fungos de *Penicillium* sp. O potencial antifúngico do óleo está relacionado aos componentes químicos com ação antimicrobiana. De acordo com estudos realizados por Oliveira et al. (2011), o citral apresenta ação bactericida e antifúngica. Para o tratamento com o óleo vegetal de nim, é possível observar que a partir da concentração de 4%, ocorre a diminuição do crescimento micelial da colônia (Tabela 3).

Tabela 1- Crescimento micelial (cm) de *Penicillium* sp submetido a diferentes concentrações de óleo essencial de capim-limão, tween, em cinco dias de avaliação.

Dias de avaliação					
	3	4	5	6	7
Tratamentos					
Sem tratamento	1,25 B	1,88 B	2,35 B	2,87 B	3,45 B
Tween 80	1,23 B	1,85 B	2,37 B	2,85 B	3,57 B
0,25 %	0,0 A				
0,50%	0,0 A				
1,00 %	0,0 A				
CV (%)	3,3	3,88	2,48	2,50	2,38

Médias seguidas de mesma letra na coluna, não diferem estatisticamente entre si (P>0,05) pelo teste de Tukey.

Tabela 2- Crescimento micelial (cm) de *Penicillium* sp submetido a diferentes concentrações de óleo essencial de citronela, tween, em cinco dias de avaliação.

Dias de avaliação					
	3	4	5	6	7
Tratamentos					
Sem tratamento	1,50 B	1,69 B	1,83 B	1,96 B	2,14 B
Tween 80	1,49 B	1,68 B	1,82 B	1,97 B	2,10 B
0,25 %	0,0 A	1,0 A	1,0 A	1,0 A	1,0 A
0,50%	0,0 A	1,0 A	1,0 A	1,0 A	1,0 A
1,00 %	0,0 A	1,0 A	1,0 A	1,0 A	1,0 A
CV (%)	3,33	3,03	3,48	2,50	2,38

Médias seguidas de mesma letra na coluna, não diferem estatisticamente entre si (P>0,05) pelo teste de Tukey.

Tabela 3- Crescimento micelial (cm) de *Penicillium* sp submetido a diferentes concentrações de óleo vegetal de nim, tween, em cinco dias de avaliação.

Dias de avaliação					
	3	4	5	6	7
Tratamentos					
Sem tratamento	0,92 B	1,38 B	2,04 C	2,39 D	5,81 D
Tween 80	0,90 B	1,39 B	2,03 C	2,40 D	5,75 C
0,5 %	0,84 B	1,35 B	1,77 B	2,28 C	4,90 C
1,0 %	0,81 B	1,33 B	1,77 B	2,27 C	4,71 C
2,0 %	0,81 B	1,36 B	1,75 B	2,04 C	4,38 B
3,0 %	0,84 B	1,33 B	1,40 B	1,83 B	4,31 B
4,0 %	0,71 A	1,23 A	1,31 A	1,61 A	4,21 A
5,0 %	0,70 A	1,21 A	1,21 A	1,58 A	4,21 A
6,0 %	0,69 A	1,17 A	1,18 A	1,50 A	4,20 A
CV (%)	9,59	11,25	9,31	9,30	5,87

Médias seguidas de mesma letra na coluna, não diferem estatisticamente entre si (P>0,05) pelo teste de Tukey.

Quanto ao efeito inseticida dos óleos sobre o *Acanthoscelides obtectus* (Say.), tem-se que a avaliação de 24 horas após montagem do experimento não houve diferença significativa da sobrevivência entre os tratamentos. Contudo, após 48 horas o óleo de citronela apresentou efeito na redução da sobrevivência dos insetos diferindo do tratamento controle e do capim limão. Em todos os tratamentos, analisando ao longo do tempo de avaliação (24,48 e 72 horas) não houve diferença em relação à sobrevivência dos insetos (Tabela 4). O uso do detergente Tween 80% para solubilização dos óleos, pode ter causado interferência na concentração dos princípios ativos dos óleos estudados, diminuindo seu efeito sobre os insetos. Estudos mais complexos quanto à solubilização, concentração e modo de aplicação dos óleos, deverão ser realizados.

Tabela 4- Número de adultos sobreviventes de *Acanthoscelides obtectus* (Say.) submetido aos tratamentos Controle, (óleo essencial de Capim limão 0.5%; óleo de nim 4%, óleo essencial de Citronela 0,5%), sobre feijão-Vagem. Em condições de temperatura 25±2 °C, umidade relativa de 60±10 % e fotofase 12h.

T	Гетро	Controle	Capim limão	Nim	Citronela
24	10 aA	10 aA	10 aA	9.8 aA	8.8 aA
48	9.6 bA	9.6 bA	9.6 bA	9.4 abA	7.8 aA
72	9,0 AbA	9.4 bA	9.4 bA	9.2 bA	7.4 aA

Médias seguidas de mesma letra na coluna, não diferem estatisticamente entre si (P>0,05) pelo testede Tukey.

CONSIDERAÇÕES FINAIS

Os óleos utilizados foram eficazes na diminuição do crescimento micelial dos fungos do gênero *Penicillium* sp. de acordo com o aumento da concentração utilizada. O óleo essencial de citronela apresenta efeito na redução da sobrevivência de adultos de *Acanthoscelides obtectus* (Say.), após 48 horas.

REFERÊNCIAS

CASTRO, L.O.; RAMOS, R.L.D. Principais gramíneas produtoras de óleos essenciais: Cymbopogon citratus (DC.) Stapf., capim-cidró, Cymbopogon martinii (Rox.) Porto Alegre: FEPAGRO, 2013. 23p.

GIULIETTI, A.M. et al. **Biodiversidade e conservação das plantas no Brasil.** Megadiversidade, v.1, n.1, p.52-61, 2015.

OLIVEIRA, M.M.M.1*; BRUGNERA, D.F.1; CARDOSO, M.G.2; GUIMARÃES, L.G.L.2; PICCOLI, R.H.1.Rendimento, composição química e atividade antilisterial de óleos essenciais de espécies de Cymbopogon. Rev. Bras. Pl. Med., Botucatu, v.13, n.1, p.8-16, 2011.

RAMOS K, ANDREANI JUNIOR R, KOZUSNY-ANDREANI DI. **Óleos essenciais e vegetais sem controle in vitro de Colletotrichum gloeosporioides**. Rev bras plantas med. 2016;18(2):605–12.

SIDDIQUISA, ISLAMR, JAMALAHM, PARVINT, RAHMANA (2017). **Chemical composition** and antifungal properties of the essential oil and various extracts of Mikania scandens **(L.) Willd.** Arabian Journal of Chemistry 10: S2170–S2174.