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ABSTRACT: Numerical Limit Analysis (NLA), although little known and used, is a powerful technique to 
efficiently determine the stability conditions in slopes. In this paper, we extend the application of the NLA by 
including a probabilistic framework to capture the spatial variability of soil shear strength parameters. To 
achieve this, stationary, unconditional, multivariate, cross-correlated random fields were implemented on an 
existing, in-house developed computer code, employing both conventional and stepwise Covariance 
Decomposition Methods (CMD). In order to verify the implemented code in terms of efficiency and 
robustness, 2D and 3D problems were analyzed. The paper demonstrates that NLA is a robust alternative to 
standard methods such as the limit equilibrium and finite element method with the strength reduction 
technique. Emphasis is placed on the significance of incorporating autocorrelation and cross-correlation to 
realistically represent spatial variation in parameters and address uncertainties associated with soil shear 
strength. 
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1 INTRODUCTION 

Slope engineering is perhaps the geotechnical subject most dominated by uncertainty. Geological 
anomalies, inherent spatial variability of soil properties, scarcity of representative data, changing 
environmental conditions, unexpected failure mechanisms, simplifications and approximations adopted in 
geotechnical models and human mistakes in design and construction, are all factors contributing to uncertainty 
(El-Ramly et al., 2002). In response to the inherent uncertainty surrounding the definition of soil shear strength 
parameters, conventional engineering practices frequently employ probabilistic analysis utilizing a Single 
Random Variable (SRV) approach, where one-point statistical parameters such as the mean and variance of 
shear strength parameters are specified and exhibit complete correlation at any point in the model. This 
approach suffers a significant drawback: it cannot account for the spatial structure and averaging of the soil 
properties, potentially resulting in inaccurate predictions of failure mechanisms and safety factors (Fs) (Ou-
Yang et al., 2021). Over the past two decades, significant progress has been achieved in probabilistic analysis 
by integrating Random Fields (RFs) to address the spatial variability of soil parameters. Concerning shear 
strength parameters, certain studies have incorporated the undrained shear strength (𝑠௨) (Griffiths & Fenton, 
2000a, 2000b; Hicks & Samy, 2002; Jiang & Huang, 2018; Zhu et al., 2021) while others have integrated both 
cohesion (𝑐) and friction angle (𝜙) (Cho, 2007; Li et al., 2015; Tang et al., 2020; M. Y. Wang et al., 2020; 
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Z.-Z. Wang & Goh, 2021), as spatial random variables, within a probabilistic framework. The primary methods 
utilized in conjunction with RFs generation techniques, to evaluate the slope stability margin have traditionally 
been the Limit Equilibrium Method (LEM) and the finite element method (FEM). Despite its computational 
efficiency, LEM suffers from a significant drawback: the requirement to assume the shape and location of the 
slope failure surface. This limitation prevents the identified mechanism from naturally finding the most critical 
path through the soil (Griffiths & Fenton, 2004). Alternatively, the incorporation of FEM leads to a more 
rigorous probabilistic analysis. This method does not require a priori assumptions concerning the shape or 
location of the failure surface. However, it stills faces a significant limitation: the extensive computational 
efforts needed when working with multiple simulations, thereby limiting its application for large-scale and 3D 
realistic models.  Numerical Limit Analysis (NLA) is a specialized technique for analyzing collapse 
problems that offers an alternative to both LEM and FEM. It has demonstrated significant computational 
efficiency in resolving large-scale problems, while eliminating the necessity for assumptions concerning the 
failure mechanism, which makes it an appropriate tool for evaluating slope stability within a probabilistic 
methodology. Despite its advantages, few works have used NLA within probabilistic frameworks, with most 
of them focusing on the analysis of 2D slope stability problems (e.g. Huang et al., 2013; X. Wang et al., 2022). 
This study aims to explore the application of NLA within a probabilistic framework incorporating cross-
correlated random fields and employing Monte Carlo Simulations (MCS) for 2D and 3D problems. The 
subsequent sections detailed some aspects of NLA, the generation of Random Fields and the adopted 
probabilistic framework. The implemented codes are validated in a 2D slope model and applied to analyze a 
large 3D slope. 

2 NUMERICAL LIMIT ANALYSIS 

The Numerical Limit Analysis is a method that employs plastic limit theorems and numerical techniques 
to estimate the collapse load. Static formulations of NLA establish a statically admissible stress field and 
kinematic formulations establish a kinematically compatible failure mechanism. Depending on the 
interpolation space chosen to discretize stresses and velocities, the collapse load obtained is a rigorous upper 
or lower bound of the actual collapse load. The NLA formulation employed in this study has been previously 
implemented in a MATLAB code (Araújo, 1997; Camargo et al., 2016; Carrión et al., 2017; Durand et al., 
2006; Fernández et al., 2021, 2023; Gomes et al., 2017; Tapia et al., 2013). It discretizes the static theorem of 
limit analysis using a conventional finite element mesh and mixed interpolation for stresses (𝜎) and velocities 
(𝑢̇). The velocities are interpolated using linear interpolation functions, and stresses are considered constant 
for each element. Although this mixed-weak NLA formulation does not guarantee the estimation of a rigorous 
collapse load, it enables the derivation of approximate solutions and has demonstrated efficiency and precision 
in the analysis of stability problems in various types of geotechnical structures. The stability problem is 
formulated as a convex optimization problem: 

maximize 𝜆 

      (1) subject to 𝑮. 𝝈 = 𝜆 𝒇𝒇 + 𝒇𝒗 

𝐹(𝝈) ≤ 0       

where 𝜆 ∈ ℝ , represents the collapse factor applied to the loads inducing the structural collapse, 𝝈 ∈
ℝ𝒏 is the vector of stress components, 𝐹(𝝈) ∈ ℝ𝒎 is the function of failure criterion, 𝑮 ∈ ℝ𝒑×𝒏 is the 
equilibrium matrix, 𝒇𝒗 ∈ ℝ𝒑  denotes a vector containing the structure’s self-weight, 𝒇𝒇  ∈ ℝ𝒑 is a fictitious 
nodal force vector magnified by the collapse factor, m is the number of mesh elements, n is the total number 
of stress components and p is the total number of velocity components. The transformation of the convex 
optimization problem into a second-order cone programming (SOCP) can be achieved, as proposed by 
Makrodimopoulos & Martin (2006), by substituting the stress vector 𝝈 = 𝑫ି𝟏𝝆 − 𝑫ି𝟏𝒅, where 𝝆 is an 
auxiliary vector, and arrays 𝑫 and 𝒅 facilitate the transformation of the rupture criterion. These arrays can be 
estimated from the Mohr-Coulomb parameters (𝑐 , 𝜙). The resulting optimization problem is solved by the 
interior point conic optimization algorithm, implemented by Andersen et al. (2003). The collapse factor 𝜆  is 
obtained directly from this optimization process, along with the velocities resulting from the dual optimization 
problem. The safety factor can also be obtained via strength reduction technique, as explained in Fernández et 
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al. (2023).  The collapse mechanisms are identified by plotting the normalized velocities within the model 
geometry.  

3 RANDOM FIELDS MODEL 

The Random Field theory is a powerful tool for characterizing the spatial variability of soil material 
(Vanmarcke, 1984). A random field X is a mathematical model that assigns random values to each point or 
location within a specified domain or spatial extent. To define a RF, overall statistics such as the mean (𝜇), 
the standard deviation (σ), or the coefficient of variation (COV), and the scale of fluctuation SOF (δ) are 
considered. The SOF provides insight into the range over which prominent fluctuations or changes in 
parameters occurs. This study employs the Covariance Decomposition Method to create RFs, and it involves 
the following components: (1) Definition of the Autocorrelation Matrix (C), which is the representation of 
the spatial correlation structure in a RF. It provides information about the degree of similarity between the RF 
values at different locations, considering only the distance between them, and is defined through 
autocorrelation functions (ACFs) as the single exponential (Eq.2) and Second-order Markov (Eq.3), lags Δx, 
Δy and Δz are the distances between two locations, while δx, δy and δz are the SOF, in the x, y and z directions, 
respectively. 
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The autocorrelation coefficient is evaluated at each location and the resulting matrix C has dimensions 
𝑛௘  × 𝑛௘, where 𝑛௘ represents the total number of points at which the random field is discretized. In the 
conventional CMD the discretization process employed follows a midpoint approach, where each realization 
of X is represented as a piecewise constant and defined at the centroid of each element. (2) Definition of the 
Cross-correlation Matrix (R), it is possible to include cross-correlation between different parameters at the 
same location through the definition of the Cross-correlation matrix. This matrix, containing the correlation 
coefficients, has dimensions 𝑛௣ × 𝑛௣, where 𝑛௣ represents the total number of correlated parameters. (3) 
Cholesky decomposition and cross-correlated Random Fields generation, Cholesky decomposition 
algorithm is used to factorize the matrices  𝑪 = 𝑳𝟏 𝑳𝟏

𝑻  and 𝑹 = 𝑳𝟐 𝑳𝟐
𝑻, in order to obtain the lower triangular 

matrices L1 and L2, with 𝑛௘ × 𝑛௘ and 𝑛௣  × 𝑛௣ dimensions, respectively. A cross-correlated gaussian, 
multivariate RF is obtained as 𝑿 = 𝑳𝟏 𝝃 𝑳𝟐

𝑻, where 𝝃 is a matrix of standard normal random samples, with a 
dimension of 𝑛௘ × 𝑛௣. The RF obtained can be transformed into a Lognormal (Non-Gaussian) RF, through 
isoprobabilistic transformation. The simulation of large-scale and high-resolution RFs by the conventional 
CMD method demands substantial computational resources, alternatively the Stepwise Covariance Matrix 
Decomposition method offers an innovative approach, as explained in detail in Li et al. (2019) . 

4 PROBABILISTIC FRAMEWORK 

The probabilistic framework proposed encompasses three primary components: random fields 
generation, stability evaluation utilizing NLA, and failure function assessment. Whitin the RFs generation 
component, marginal distribution of random variables, SOF values, and cross-correlation coefficients are 
defined. Additionally, the selection of the CMD method to be employed is also made. If conventional CMD is 
chosen, the definition of the RFs is directly performed at the centroid of each finite element of the mesh, which 
will subsequently be utilized in the stability analysis. If stepwise CMD is selected, an auxiliary lattice mesh is 
created, and once the RFs values within it are defined, they are mapped to the centroid of the finite element 
mesh used for the stability analysis. In the stability evaluation component, additional deterministic parameters 
and boundary conditions are included. Collapse mechanisms, collapse factors, and safety factors are then 
obtained for each simulation. Finally, using the results from previous NLA simulations and the defined failure 
function, the probability of failure is estimated. The failure function may be defined based on the estimation 
of the safety factor as 𝐹𝑠 − 1 = 0. Alternatively, it is possible to determine the failure function in terms of the 
collapse factor as 𝜆 = 0. 
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5 VALIDATION AND APLICATION EXAMPLES 

This section is dedicated to the validation and application of the proposed probabilistic framework and 
the implemented codes. Initially, validation was conducted through probabilistic slope stability analysis on a 
2D slope problem. Subsequently, a large 3D slope was analyzed. The simulations were executed in an Intel-
i9-12900-CPU@2.40 GHz processor. 

5.1 Analysis of a 2D slope 

In order to validate the implemented codes, a 2D slope problem, previously studied by Cho (2010) with 
Random Limit Equilibrium Method (RLEM), was examined. Figure 1 (a) depicts the geometry and the finite 
element mesh utilized for the analysis, consisting of 7,826 bilinear quadrilateral elements and 8,038 nodes, 
with an average finite element size of 0.20 m. The sides at x = 0 m, x = 30 m,  and y = 0 m, have restricted 
velocities in the x and y directions. In this example, cohesion and friction angle were represented through 
cross-correlated RFs, with a mean cohesion μୡ = 10 kPa and a coefficient of variation COVୡ = 0.3, a mean 
friction angle μம = 30∘ with a coefficient of variation COVୡ = 0.2 and a cross-correlation coefficient between 
cohesion and friction angle ρୡம = − 0.5. The unit weight was assumed as a deterministic value of  γ =

20 kN/mଷ. For the generation of RFs a single exponential function was implemented, with δ୶ = 40 m  and 
δ୷ = 4 m, horizontal and vertical SOF, respectively. 5,000 MCS were conducted and the results obtained are 
presented in Table 1.  

Figure 1. (a) Geometric configuration and finite element mesh utilized in the 2D probabilistic slope stability 
analysis (b) Convergence plots of probability of failure (pf).  

As a result of PNLA-2D, the probability of failure was calculated through MCS, considering a failure function 
based on the safety factor and the collapse factor estimations, using both conventional and stepwise CMD. For 
conventional CMD the RFs were discretized at the centroid of each finite element, in this case, maintaining a 
relationship between finite element size and scale of fluctuation small enough to minimize the variance 
reduction effect due to local averaging within the element. For stepwise CMD an auxiliar grid mesh was 
created with an element size of 0.20 meters. The mean safety factor (Fs mean) and its standard deviation (Fs 
std), as estimated by Cho (2010) using the Random Limit Equilibrium Method (RLEM) with both a searching 
the critical failure surface and fixing the critical surface approaches, exhibit a noteworthy consistency with 
those estimated by the PNLA-2D code. Regarding the probability of failure, the results derived from PNLA-
2D lie within the pf values obtained by RLEM. The probability of failure values obtained by stepwise CMD 
were higher than those estimated by conventional CMD. Analysis with PNLA-2D considering a failure 
function based on the collapse factor and generating RFs with the stepwise CMD method, provided a 
reasonable estimation of the probability of failure in a shorter time, 5,000 MCS were conducted within a period 
of fewer than one hour. Figure 1 (b) depicts the convergence plots of the probability of failure for the 
implemented methodologies and the RLEM results. Figure 2 shows two typical simulation results with PNLA-
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2D, including the cohesion and friction angle RFs and their respective rupture surface. Irregular-shaped failure 
surfaces were identified, which differ from the usual circular shapes assumed in RLEM. 

Table 1. Summary of simulation results for the 2D model 

Analysis Number of simulations pf 
Fs/𝝀 

mean 
Fs/𝝀 std 

t 
(hours) 

Cho (2010) 
RLEM (searching the critical failure 
surface) 

50,000 0.017 1.20 0.10 - 

Cho (2010) 
RLEM (performed for the fixed critical 
surface) 

50,000 0.014 1.21 0.11 - 

PNLA - 2D Fs conventional CMD 5,000 0.014 1.19 0.10 8.12 

PNLA - 2D Fs stepwise CMD 5,000 0.016 1.19 0.10 6.01 

PNLA - 2D 𝜆 conventional CMD 5,000 0.014 1.86 0.76 3.82 

PNLA - 2D 𝜆 stepwise CMD 5,000 0.016 1.87 0.81 0.92 

Figure 2. Typical realizations of cross-correlated bivariate RFs and their rupture mechanisms obtained with 
the PNLA-2D code. (a) Fs = 1.02, conventional CMD (b) Fs=1.27 stepwise CMD. 

5.2 Analysis of a large 3D slope 

In this section, the stability of a large 3D slope is examined, utilizing a model based on previous studies 
by Hicks & Spencer (2010) and Varkey et al (2018). The analysis was conducted using the PNLA-3D code, 
with RFs generated through the stepwise CMD method. Figure 3 (a) illustrates the model geometry and the 
finite element mesh utilized, comprising 7,550 brick elements and 9,129 nodes. The RFs were generated using 
an auxiliary mesh of 0.50 m. The sides at x = 10 m, y= 0 m, y = 50 m, and z = 0 m have restricted velocities 
in the x, y, and z directions. The cohesion and friction angle were represented through cross-correlated RFs, 
considering a mean cohesion μୡ = 5 kPa and a coefficient of variation COVୡ = 0.2, a mean friction angle μம =

30∘ and a coefficient of variation COVம = 0.2. The unit weight was assumed as a deterministic value of  γ =

20 kN/mଷ. A second-order Markov autocorrelation function was employed to generate RFs. To assess the 
influence of various horizontal SOF, the degree of anisotropy of the heterogeneity value (𝜉) was introduced, 
representing the ratio between the horizontal (𝛿௫ = 𝛿௬ = 𝛿௛)  and vertical (𝛿௭ = 𝛿௩) SOF. The vertical SOF 
was fixed at 𝛿௩ = 2 m, while horizontal SOF of 2 m, 20 m and 100 m were evaluated, corresponding to  𝜉 =
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1, 𝜉 = 10 , and 𝜉 = 50, respectively. Three values of the cross-correlation coefficient were considered in the 
analysis: 𝜌௖థ = −0.5, 𝜌௖థ = 0 and 𝜌௖థ = 0.5.  

Sets of 1,000 simulations were conducted for each combination of 𝜉 and 𝜌௖థ, each simulation lasted about 17 
seconds. The probability density function of the safety factor obtained for each case is presented in Figure 3 
(b-d). For cases where a positive value of 𝜌௖థ was considered, distributions with lower mean safety factor 
values, and higher probability of failure were obtained. Conversely, when a negative value of 𝜌௖థ was 
implemented, the opposite effect was observed. The magnitude of  𝜉, and therefore the magnitude of the 
horizontal scale of fluctuation, significantly influences the dispersion of the safety factor distribution. The 
coefficient of variation estimated for the safety factor distributions varies from 1.5% to 8% when considering  
𝜉 = 1  and 𝜉 = 50, respectively, while maintaining  𝜌 ௖థ = −0.5. Figure 4 shows two typical results obtained 
with PNLA-3D. These results include the cohesion and friction angle RFs alongside their respective failure 
surfaces. Discrete failure surfaces were identified at various zones of the slope, and their positions were directly 
correlated with the spatial distribution of the parameters obtained during the generation of RFs. The maximum 
probability of failure, estimated considering 𝜉 = 50 and 𝜌௖థ = 0.5, was 3.9%.   

Figure 3. Geometric configuration and results obtained in the 3D probabilistic slope stability analysis. (a) 
 Finite element mesh utilized, composed by 7550 brick elements and 9129 nodes. Safety factor probability 
density functions obtained for each case, considering different degrees of anisotropy of the heterogeneity: (b) 
𝜉 = 1, (c) 𝜉 = 10 and (d) 𝜉 = 50. 

6 DISCUSSION AND CONCLUSIONS 

In this study, a probabilistic numerical limit analysis PNLA code has been developed for analyzing 2D 
and 3D slope stability problems, considering the spatial variability of soil shear strength parameters. The 
probabilistic framework proposed, integrates the covariance matrix decomposition (CMD) method, along with 
the numerical limit analysis (NLA) and Monte Carlo Simulations (MCS), to evaluate the probability of failure 
and the safety factor distribution. The PNLA code was initially validated using a 2D slope stability model. The 
safety factor statistics and estimations of the probability of failure made with PNLA closely approximated 
those presented by  Cho (2010), who used the Random Limit Equilibrium Method (RLEM). However, PNLA 
simulations provide more realistic definitions of rupture mechanisms, as RLEM cannot identify irregular 
rupture surfaces. This aspect could have significant implications in consequence analysis within a risk 
evaluation framework. The application example of the 3D large slope presented allows for the verification of 
the significant influence of the scale of fluctuation and the cross-correlation coefficient magnitudes. Adopting 
a positive cross-correlation coefficient between shear strength parameters increases the estimated probability 
of failure. Meanwhile, a higher degree of anisotropy of the heterogeneity values, and therefore a higher 
horizontal scale of fluctuation values, significantly affects the dispersion of the safety factor distribution. 
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Within the analysis methodologies presented in this study, integrating stepwise CMD with a failure function 
based on the collapse factor emerges as an efficient approach for assessing the probability of failure in large-
scale, high-resolution problems. 

Figure 4. Typical realizations of cross-correlated bivariate RFs and its rupture mechanisms obtained in the 
PNLA-3D code. (a) 𝜉 = 10,  𝜌௖థ = −0.5, Fs = 1.17, (b) 𝜉 = 10, 𝜌௖థ = 0.5, Fs = 1.11. 
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